

Concours 2025

Mines Mathématiques 1 MP 2025

Corrigé du sujet

Ne pas hésiter à signaler ce que vous pensez être une erreur : contact@optimalsupspe.fr

Préambule

- Dans ce sujet, par souci de compréhension, on évitera d'utiliser les notations introduites par l'énoncé. Pendant le concours, il est vivement recommandé de les manipuler.
- Les variables aléatoires étant définies sur $(\Omega, \mathcal{P}(\Omega), \mathbb{P})$, toutes les variables aléatoires introduites admettent des moments à tout ordre. On ne le rappellera donc pas.
- Même si le support des variables aléatoires est fini, le sujet est très technique dans ses calculs.
- Les parties I et II sont très classiques. Il est attendu des candidats d'avoir bien traité ces parties. Avoir traité correctement ces parties peut presque donner la moyenne.
- La partie III est plus corsée (on établit les inégalités de Khintchine) et amène à des délicatesses. A priori, un candidat étant arrivé jusque là est probablement admissible (si les questions traitées sont justes). C'est sans doute la partie la plus technique.
- Les parties IV et V sont certainement les plus dures : elles demandent du recul. Ces parties permettront de départager les meilleurs candidats.
- Au final, le sujet est un bon cru : les questions s'enchaînent très bien à condition de ne pas perdre le fil. Le sujet contient des questions classiques, et quelques questions difficiles (voire très difficiles) sont parsemées dans les parties III, IV et V.
- Mise à part un soupçon de topologie, d'intégrale généralisée et de série entière, tout le sujet est faisable avec les outils de première année, essentiellement les probabilités.

1 Inégalité de Hölder

1. Soit $x, y \in \mathbb{R}^+$. Alors si x = 0 ou y = 0, le résultat est clair. Supposons donc x, y > 0. Par concavité du logarithme,

$$\ln(xy) = \ln(x) + \ln(y) = \frac{1}{p}\ln(x^p) + \frac{1}{q}\ln(x^q) \le \ln\left(\frac{1}{p}x^p + \frac{1}{q}x^q\right).$$

Par croissance de exp, on obtient alors

$$\forall x, y \ge 0, xy \le \frac{x^p}{p} + \frac{x^q}{q}$$

ce qui constitue l'inégalité de Young.

2. Traitons le cas $\mathbb{E}[X^p] = \mathbb{E}[Y^q] = 1$, noté cas (*). On applique alors l'inégalité de Young : on écrit

$$\begin{split} \mathbb{E}[XY] &= \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} xy \mathbb{P}(X=x) \mathbb{P}(Y=y) \\ &\leq \sum_{(x,y) \in X(\Omega) \times Y(\Omega)} \left[\frac{x^p}{p} + \frac{y^q}{q} \right] \mathbb{P}(X=x) \mathbb{P}(Y=y) \\ &= \sum_{x \in X(\Omega)} \frac{x^p}{p} \mathbb{P}(X=x) \sum_{\underbrace{y \in Y(\Omega)}} \mathbb{P}(Y=y) + \sum_{y \in Y(\Omega)} \frac{y^q}{q} \mathbb{P}(Y=y) \sum_{\underbrace{x \in X(\Omega)}} \mathbb{P}(X=x) \\ &= \frac{1}{p} \sum_{x \in X(\Omega)} x^p \mathbb{P}(X=x) + \frac{1}{q} \sum_{y \in Y(\Omega)} y^q \mathbb{P}(Y=y) \\ &= \frac{1}{p} \mathbb{E}[X^p] + \frac{1}{q} \mathbb{E}[X^q] = \frac{1}{p} + \frac{1}{q} = 1 \\ &= 1^{1/p} 1^{1/q} = (\mathbb{E}[X^p])^{1/p} (\mathbb{E}[X^q])^{1/q}. \end{split}$$

Cas général : Si X^p ou Y^q est d'espérance nulle, l'inégalité est immédiate. Supposons donc que ce n'est pas le cas et notons $X'=\frac{X}{(\mathbb{E}[X^p])^{1/p}}, Y'=\frac{Y}{(\mathbb{E}[Y^q])^{1/q}}$. On peut remarquer que X',Y' se trouve dans le cas (*). On a donc

$$\mathbb{E}[X'Y'] \le 1.$$

Or, par linéarité de l'espérance.

$$\mathbb{E}[X'Y'] = \mathbb{E}\left[\frac{X}{(\mathbb{E}[X^p])^{1/p}} \frac{Y}{(\mathbb{E}[Y^q])^{1/q}}\right] = \frac{1}{(\mathbb{E}[X^p])^{1/p} (\mathbb{E}[Y^q])^{1/q}} \mathbb{E}[XY] \le 1.$$

On a donc

$$\mathbb{E}[XY] \le (\mathbb{E}[X^p])^{1/p} (\mathbb{E}[Y^q])^{1/q}.$$

Remarque. Avec ceci, on peut démontrer l'inégalité de Minkowski.

3. Si p=q=2, on retrouve l'inégalité de Cauchy-Schwarz. Pour faire la preuve, on écrit la chose suivante : soit $f:t\mapsto \mathbb{E}[(X+tY)^2]$. Alors

$$\forall t \in \mathbb{R}, f(t) = \mathbb{E}[X^2] + 2t\mathbb{E}[XY] + t^2\mathbb{E}[Y^2] \ge 0.$$

Ainsi, f est polynomiale de degré 2 de signe positif : son discriminant est donc négatif ce qui s'écrit

$$4\mathbb{E}[XY]^2 - 4\mathbb{E}[X^2]\mathbb{E}[Y^2] \le 0$$

donc

$$\mathbb{E}[XY]^2 \le \mathbb{E}[X^2]\mathbb{E}[Y^2].$$

C'est équivalent à Hölder pour p=q=2 puisque $XY\geq 0$ donc $\mathbb{E}[XY]\geq 0$ et on peut passer à la racine carrée ce qui conclut.

2 Une inégalité de déviation

4. C'est une question « série entière »! On a

$$\forall t \in \mathbb{R}, \cosh(t) = \sum_{n=0}^{+\infty} \frac{1}{(2n)!} t^{2n}, \ \exp(t^2/2) = \sum_{n=0}^{+\infty} \frac{1}{n!2^n} t^{2n}.$$

Or,

$$\forall n \in \mathbb{N}, 2^n \le \prod_{k=n+1}^{2n} k$$

donc

$$\frac{1}{(2n)!} \le \frac{1}{n!2^n}$$

donc par positivité de t^{2n} pour tout $t \in \mathbb{R}$ et $n \in \mathbb{N}$, on a

$$\cosh(t) \le \exp(t^2/2).$$

5. Soit $t \geq 0, (c_1, \dots, c_n) \in \mathbb{R}^n$. Alors

$$\mathbb{E}\left[\exp\left(t\sum_{i=1}^{n}c_{i}X_{i}\right)\right] = \mathbb{E}\left[\prod_{i=1}^{n}\exp(tc_{i}X_{i})\right]$$

$$= \prod_{(**)}^{n}\mathbb{E}[\exp(tc_{i}X_{i})]$$

$$= \prod_{(***)}^{n}\mathbb{E}[\exp(tc_{i}X_{1})].$$

(**) est justifiée par indépendance des variables aléatoires et (* * *) par le fait qu'elles suivent la même loi. Ensuite, par la formule de transfert, pour tout $1 \le i \le n$,

$$\mathbb{E}[\exp(tc_iX_1)] = \frac{\exp(tc_i) + \exp(-tc_i)}{2} = \cosh(tc_i) \le \exp(t^2c_i^2/2).$$

Ainsi, on peut continuer le calcul:

$$\mathbb{E}\left[\exp\left(t\sum_{i=1}^n c_i X_i\right)\right] \le \prod_{i=1}^n \exp\left(\frac{t^2}{2}c_i^2\right) = \exp\left(\frac{t^2}{2}\sum_{i=1}^n c_i^2\right).$$

6. Soit $x, t \in \mathbb{R}^+$, c_1, \dots, c_n des réels. Si x = 0, on demande à une probabilité d'être inférieure ou égale à 2 ce qui est toujours vrai. Considérons donc x > 0. On a

$$\exp\left(x\left|\sum_{i=1}^{n}c_{i}X_{i}\right|\right) > e^{tx} \iff \left|\sum_{i=1}^{n}c_{i}X_{i}\right| > t$$

$$\iff \sum_{i=1}^{n}c_{i}X_{i} > t \text{ ou } -\sum_{i=1}^{n}c_{i}X_{i} > t$$

$$\iff \exp\left(x\sum_{i=1}^{n}c_{i}X_{i}\right) > e^{tx} \text{ ou } \exp\left(-x\sum_{i=1}^{n}c_{i}X_{i}\right) > e^{tx}$$

car $\exp(\cdot x)$ est strictement croissante (on rappelle que x > 0). On en déduit, par sous-additivité de \mathbb{P} ,

$$\mathbb{P}\left(\exp\left(x\left|\sum_{i=1}^{n}c_{i}X_{i}\right|\right) > e^{tx}\right) \leq \mathbb{P}\left(\exp\left(x\sum_{i=1}^{n}c_{i}X_{i}\right) > e^{tx}\right) + \mathbb{P}\left(\exp\left(-x\sum_{i=1}^{n}c_{i}X_{i}\right) > e^{tx}\right) \\
\leq \mathbb{P}\left(\exp\left(x\sum_{i=1}^{n}c_{i}X_{i}\right) \geq e^{tx}\right) + \mathbb{P}\left(\exp\left(-x\sum_{i=1}^{n}c_{i}X_{i}\right) \geq e^{tx}\right).$$

Par l'inégalité de Markov, puisque $\exp\left(x\sum_{i=1}^n c_iX_i\right)$ et $\exp\left(-x\sum_{i=1}^n c_iX_i\right)$ sont des variables aléatoires réelles positives,

$$\mathbb{P}\left(\exp\left(x\left|\sum_{i=1}^n c_i X_i\right|\right) > e^{tx}\right) \le e^{-tx} \mathbb{E}\left[\exp\left(x\sum_{i=1}^n c_i X_i\right)\right] + e^{-tx} \mathbb{E}\left[\exp\left(x\sum_{i=1}^n (-c_i) X_i\right)\right].$$

On applique la question précédente : on obtient alors

$$\mathbb{P}\left(\exp\left(x\left|\sum_{i=1}^n c_i X_i\right|\right) > e^{tx}\right) \leq e^{-tx}\left(\exp\left(\frac{x^2}{2}\sum_{i=1}^n c_i^2\right) + \exp\left(\frac{x^2}{2}\sum_{i=1}^n (-c_i)^2\right)\right) = 2e^{-tx}\exp\left(\frac{x^2}{2}\sum_{i=1}^n c_i^2\right).$$

7. Soit x > 0. Alors

$$\exp\left(x\left|\sum_{i=1}^{n}c_{i}X_{i}\right|\right) > e^{tx} \Longleftrightarrow \left|\sum_{i=1}^{n}c_{i}X_{i}\right| > t$$

donc

$$\mathbb{P}\left(\left|\sum_{i=1}^n c_i X_i\right| > t\right) = \mathbb{P}\left(\exp\left(x\left|\sum_{i=1}^n c_i X_i\right|\right) > e^{tx}\right) \le 2e^{-tx}\exp\left(\frac{x^2}{2}\sum_{i=1}^n c_i^2\right).$$

On majore le membre de droite. On écrit alors

$$e^{-tx} \exp\left(\frac{x^2}{2} \sum_{i=1}^n c_i^2\right) = \exp(-tx + ax^2/2)$$

avec $a = \sum_{i=1}^{n} c_i^2$. Or, $ax^2/2 - tx$ est polynomiale en x: elle atteint son minimum en $\frac{t}{a}$. Ainsi, pour $x = \frac{t}{a}$, on obtient

$$\exp(-tx + ax^2/2) = \exp\left(-\frac{t^2}{a} + \frac{at^2}{2a^2}\right) = \exp\left(-\frac{t^2}{2a}\right).$$

Ainsi, l'inégalité

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} c_i X_i\right| > t\right) \le 2e^{-tx} \exp\left(\frac{x^2}{2} \sum_{i=1}^{n} c_i^2\right)$$

pour $x = \frac{t}{a}$ avec $a = \sum_{i=1}^{n} c_i^2$ donne

$$\mathbb{P}\left(\left|\sum_{i=1}^{n} c_i X_i\right| > t\right) \le 2 \exp\left(-\frac{t^2}{2\sum_{i=1}^{n} c_i^2}\right).$$

3 Inégalités de Khintchine

8. Comme Ω est fini, notons $\{x_1, \dots, x_n\} = X(\Omega)$ et on range ces éléments dans l'ordre croissant. Alors F_X est constant sur $]-\infty, x_1[,]x_n, +\infty[$ et sur $]x_i, x_{i+1}[, 1 \le i \le n-1.$ On en déduit que F_X est constante par morceaux donc continue par morceaux. De plus, $\forall t > x_n, \mathbb{P}(X > t) = 0$ donc

$$\int_0^{+\infty} t^{p-1} F_X(t) dt = \int_0^{x_n} t^{p-1} F_X(t) dt$$

qui existe car $t\mapsto t^{p-1}F_X(t)$ est donc continue par morceaux. Ensuite, on remarque que

$$\forall x < x_1, \mathbb{P}(X > x) = 1 \; ; \; \forall i \in [1, n-1], \forall t \in]x_i, x_{i+1}[, F_X(t) = \mathbb{P}(X > t) = \mathbb{P}(X \ge x_{i+1}) = \sum_{k=i+1}^{n} \mathbb{P}(X = x_k).$$

Ainsi, en posant $x_0 = 0$,

$$p \int_0^{+\infty} t^{p-1} F_X(t) dt = p \int_0^{x_n} t^{p-1} F_X(t) dt$$

$$= p \sum_{i=0}^{n-1} \int_{x_i}^{x_{i+1}} t^{p-1} F_X(t) dt$$

$$= \sum_{i=0}^n \sum_{k=i+1}^n [x_{i+1}^p - x_i^p] P(X = x_k)$$

$$= \sum_{k=0}^n P(X = x_k) \sum_{i=0}^{k-1} [x_{i+1}^p - x_i^p]$$

$$= \sum_{k=0}^n P(X = x_k) x_k^p = \mathbb{E}[X^p]$$

par la formule de transfert.

9. Soit $f: t \in \mathbb{R}^+ \mapsto t^3 e^{-t^2/2} \in \mathbb{R}$. Alors f est continue sur \mathbb{R}^+ et par croissances comparées, $t^2 f(t) \underset{t \to +\infty}{\longrightarrow} 0$. Ainsi, $f(t) \in o_{t \to +\infty}(1/t^2)$ donc par comparaison, puisque $t \mapsto 1/t^2 \in L^1([1, +\infty[), f])$ est intégrable au voisinage de $+\infty$.

Ainsi, $\int_0^{+\infty} t^3 e^{-t^2/2}$ converge. Ensuite, par la question 8, on a

$$\mathbb{E}[Y^4] = 4 \int_0^{+\infty} t^3 \mathbb{P}(X > t) dt$$

avec $Y = \left| \sum_{i=1}^{n} c_i X_i \right|$ qui est bien finie et positive. Or, la question 7 assure que

$$\mathbb{P}(Y > t) \le 2 \exp\left(-\frac{t^2}{2}\right)$$

sous l'hypothèse $\sum_{i=1}^{n} c_i^2 = 1$. On en déduit donc que

$$\mathbb{E}[Y^4] \le 8 \int_0^{+\infty} t^3 e^{-t^2/2} dt$$

avec
$$Y = \left| \sum_{i=1}^{n} c_i X_i \right|$$
.

10. Comme les $(X_i)_i$ suivent une loi de Rademacher centrée, on en déduit que toute combinaison linéaire des $(X_i)_i$ l'est. Soit $1 \le i \le n$, on a $\mathbb{E}[X_i^2] = \frac{1}{2}(-1)^2 + \frac{1}{2}(1)^2 = 1 = \text{Var}(X_i)$ donc

$$\mathbb{E}\left[\left(\sum_{i=1}^{n} c_i X_i\right)^2\right] = \mathbb{E}\left[\left(\sum_{i=1}^{n} c_i X_i\right)^2\right] - \underbrace{\left(\mathbb{E}\left[\sum_{i=1}^{n} c_i X_i\right]\right)^2}_{=0}$$

$$= \operatorname{Var}\left(\sum_{i=1}^{n} c_i X_i\right)$$

$$= \sum_{i=1}^{n} c_i^2 \operatorname{Var}(X_i) = \sum_{i=1}^{n} c_i^2$$

(****) est justifiée car comme les $(X_i)_i$ sont indépendants, elles sont en particulier non corrélées. Remarque. On pouvait tout développer brutalement.

11. Traitons le cas $\sum_{i=1}^{n} c_i^2 = 1$. Alors on raisonne comme à la question 9. On a, avec $Y = \left| \sum_{i=1}^{n} c_i X_i \right|$,

$$\mathbb{E}[Y^p] = p \int_0^{+\infty} t^{p-1} \mathbb{P}(Y > t) dt$$

par la question 8. Par la question 7,

$$\mathbb{P}(Y > t) \le 2\exp(-t^2/2)$$

puisqu'on suppose que $\sum_{i=1}^{n} c_i^2 = 1$. Finalement

$$\mathbb{E}[Y^p]^{1/p} \le \left(p \int_0^{+\infty} t^{p-1} \exp(-t^2/2) dt\right)^{1/p} =: \beta_p.$$

 β_p s'exprime en fonction de Γ : par un changement de variable, on trouve $p2^{\frac{p-2}{2}}\Gamma\left(\frac{p}{2}\right)$. On en déduit donc que

$$\mathbb{E}\left[\left|\sum_{i=1}^{n} c_i X_i\right|^p\right]^{1/p} \le \beta_p.$$

Traitons le cas général. Notons $c_i' = \frac{c_i}{\sum_{i=1}^n c_i^2 = 1}$ de sorte que $\sum_{i=1}^n (c_i')^2 = 1$. Alors en notant

$$Y = \left| \sum_{i=1}^n c_i X_i \right|, Y' = \left| \sum_{i=1}^n c_i' X_i \right|,$$
 on a

$$\mathbb{E}[(Y')^p]^{1/p} \le \beta_p$$

et

$$\mathbb{E}[Y'^p]^{1/p} = \mathbb{E}\left[\left(\frac{1}{\sum_{i=1}^n c_i^2}\right)^p Y^p\right]^{1/p} = \frac{1}{\sum_{i=1}^n c_i^2} \mathbb{E}[Y^p]^{1/p}.$$

On en déduit donc que

$$\mathbb{E}[Y^p]^{1/p} = \mathbb{E}[(Y')^p]^{1/p} \sum_{i=1}^n c_i^2 \le \beta_p \sum_{i=1}^n c_i^2 = \beta_p \mathbb{E}\left[\left(\sum_{i=1}^n c_i X_i\right)^2\right]$$

par la question 10.

12. Comme $p \ge 2$, notons $p' = \frac{p}{2}$ et $q' = 1 - \frac{1}{p'} = 1 - \frac{2}{p} = \frac{p-2}{p}$. Soit $Y = \left| \sum_{i=1}^{n} c_i X_i \right|$. On applique Hölder avec le couple (p', q') pour majorer $\mathbb{E}[Y^2 \times 1]$: on a

$$\mathbb{E}[Y^2 \times 1] \le \mathbb{E}[(Y^2)^{p'}]^{1/p'} \mathbb{E}[1]^{1/q'}$$

avec 1 variable aléatoire valant 1 sur le support de Y, et 0 sinon. Ainsi, comme $\mathbb{E}[1]^{1/q'}=1$, on a $\mathbb{E}[Y^2]<\mathbb{E}[Y^p]^{2/p}.$

On passe l'inégalité à la racine carrée : comme Y est à valeurs positives, on a bien

$$(\mathbb{E}[Y^2])^{1/2} \le (\mathbb{E}[Y^p])^{1/p}$$

ce qui donne bien

$$\left(\mathbb{E}\left[\left(\sum_{i=1}^{n} c_i X_i\right)^2\right]\right)^{1/2} \le \left(\mathbb{E}\left[\left|\sum_{i=1}^{n} c_i X_i\right|^p\right]\right)^{1/p}.$$

13. On peut donner deux réponses.

- Réponse 1. On rappelle que pour tous a,b réels avec a < b, $]a,b[=\{\vartheta a+(1-\vartheta)b:\vartheta\in]0,1[\}$ donc comme $\frac{1}{2}\in\left]\frac{1}{4},\frac{1}{p}\right[$ (ce qui est vrai car $1\leq p<2$), il existe $\vartheta\in]0,1[$ vérifiant $(1-\vartheta)\frac{1}{4}+\vartheta\frac{1}{p}$.
- Réponse 2. Soit $\theta \in \mathbb{R}$. Alors

$$\frac{1}{2} = \frac{\theta}{p} + \frac{1-\theta}{4} \Longleftrightarrow 2p = 4\theta + p - \theta p = \theta(4-p) + p.$$

Ainsi,

$$\theta = \frac{p}{4 - p}$$

est l'unique solution de l'équation cherchée. Maintenant, $1 \le p < 2 \iff 2 < 4 - p \le 3 \iff \frac{1}{3} \le \frac{1}{4-p} < \frac{1}{2}$. Ainsi, $\theta \in \left[\frac{1}{3}, 1\right[\subset]0, 1[$.

14. On a la décomposition

$$1 = \frac{2\theta}{p} + \frac{1-\theta}{2}.$$

Notons $Y = \left| \sum_{i=1}^{n} c_i X_i \right|$. Alors $Y^2 = Y^{2\theta} Y^{2(1-\theta)}$. On souhaite appliquer Hölder sur ce produit. Posons donc $p' = \frac{p}{2\theta}$ et $q' = \frac{2}{1-\theta}$. Ainsi, $\frac{1}{p'} + \frac{1}{q'} = 1$. Ainsi, par Hölder,

$$\mathbb{E}[Y^2] = \mathbb{E}[Y^{2\theta}Y^{2(1-\theta)}] \leq \mathbb{E}[Y^{2\theta p'}]^{1/p'}\mathbb{E}[Y^{2(1-\theta)q'}]^{1/q'}.$$

En remplaçant, on a

$$\mathbb{E}[Y^2] \le \mathbb{E}[Y^p]^{2\theta/p} \mathbb{E}[Y^4]^{(1-\theta)/2}$$

avec $Y = \left| \sum_{i=1}^{n} c_i X_i \right|$ et c'est ce qu'on voulait.

15. Notons $Y = \left| \sum_{i=1}^{n} c_i X_i \right|$. Plaçons-nous dans le cas où $\mathbb{E}[Y^2] = \sum_{i=1}^{n} c_i^2 = 1$. Alors par la question 9, on

$$\mathbb{E}[Y^4] \le 8 \int_0^{+\infty} t^3 e^{-t^2/2} dt =: C.$$

Dans le cas général, si $\mathbb{E}[Y^2] = 0$, il n'y a rien à montrer. Sinon, on note $c_i' = \frac{1}{(\mathbb{E}[Y^2])^{1/2}} c_i$ pour

tout $1 \leq i \leq n$ de sorte que $Y' := \sum_{i=1}^n c_i' X_i$ vérifie $\mathbb{E}[(Y')^2] = 1$ donc

$$\mathbb{E}[(Y')^4] \le C.$$

Ainsi, $\mathbb{E}[Y^4] \leq C \mathbb{E}[Y^2]^2$ donc par la question précédente, comme $1-\theta \geq 0,$ on a

$$\mathbb{E}[Y^4]^{(1-\theta)/2} \le C^{1-\theta} \mathbb{E}[Y^2]^{1-\theta}.$$

On en déduit

$$\mathbb{E}[Y^2] \le C^{1-\theta} \mathbb{E}[Y^p]^{2\theta/p} \mathbb{E}[Y^2]^{1-\theta}.$$

Ainsi,

$$C^{\theta-1}\mathbb{E}[Y^2]^{\theta} < \mathbb{E}[Y^p]^{2\theta/p}$$

donc en passant à la puissance $1/2\theta$, on a

$$\widetilde{\alpha_p} \mathbb{E}[Y^2]^{1/2} \le \mathbb{E}[Y^p]^{1/p}$$
.

avec
$$\widetilde{\alpha_p} = C^{\frac{\theta-1}{2\theta}}$$
 et $C = 8 \int_0^{+\infty} t^3 e^{-t^2/2} dt$

16. On prend $\alpha_p=1$ si $p\geq 2$ et $\alpha_p=\widetilde{\alpha_p}$ si $p\in [1,2[$. Par la 12 et la 15, on a le résultat.

4 Une première conséquence

- 17. C'est du cours. Soit $X, Y, Y_1, Y_2 \in L^0(\Omega), \lambda, \mu \in \mathbb{R}$. On a
 - $\varphi(X, \lambda Y_1 + \mu Y_2) = \mathbb{E}[X(\lambda Y_1 + \mu Y_2)] = \lambda \mathbb{E}[XY_1] + \mu \mathbb{E}[XY_2] = \lambda \varphi(X, Y) + \mu \varphi(X, Y_2)$ par linéarité de l'espérance : φ est linéaire à droite
 - $\varphi(Y,X) = \mathbb{E}[YX] = \mathbb{E}[XY] = \varphi(X,Y) : \varphi$ est symétrique. De plus, il est donc linéaire à gauche.
 - $\varphi(X,X) = \mathbb{E}[X^2] \ge 0$ par positivité de l'espérance, X^2 étant positif.
 - $\varphi(X,X) = 0$ entraine $\mathbb{E}[X^2] = 0$ donc X^2 est presque sûrement constante égale à 0: le sujet confond être constant et presque sûrement constant donc X = 0.

Ainsi, φ est un produit scalaire sur L⁰(Ω).

18. Soit $u \in \mathbb{R}^{(\mathbb{N})}$. Alors il existe $N \in \mathbb{N}$ tel que $\forall n \geq N, u_n = 0$. Ainsi,

$$\psi(u) = \sum_{i=0}^{N} u_i X_i$$

donc $\psi(u)$ est bien une variable aléatoire : son support est inclus dans $\left[-\sum_{i=0}^{N}|u_i|,\sum_{i=0}^{N}|u_i|\right]$ donc $\psi(u)\in \mathrm{L}^0(\Omega)$.

Ensuite, avant de continuer, on remarque que φ admet $(X_i)_i$ comme famille orthonormée. En effet, si $k \neq \ell$ pour tous $k, \ell \in \mathbb{N}$, X_k et X_ℓ sont indépendantes donc $\varphi(X_k, X_\ell) = \mathbb{E}[X_k]\mathbb{E}[X_\ell] = 0$. Si $k = \ell$, alors $\varphi(X_k, X_k) = \mathbb{E}[X_k^2] = 1$ (déjà calculé à la question 10). Maintenant, soit $u, v \in \mathbb{R}^{(\mathbb{N})}$. Alors

$$\varphi(\psi(u), \psi(v)) = \mathbb{E}[\psi(u)\psi(v)] = \sum_{k,\ell=0}^{+\infty} u_k v_\ell \underbrace{\mathbb{E}[X_k X_\ell]}_{=\delta_{k,\ell}} = \sum_{k=0}^{+\infty} u_k v_k = \langle u, v \rangle.$$

19. Soit α_p, β_p obtenus dans 11 et 16. Alors soit $X \in \psi(\mathbb{R}^{(\mathbb{N})})$. Alors il existe $u \in \mathbb{R}^{(\mathbb{N})}$ tel que $\psi(u) = X$ et

$$||X||_p = \left(\mathbb{E}\left[\sum_{i=0}^{+\infty} |u_i X_i|^p\right]\right)^{1/p} \leq \beta_p \left(\mathbb{E}\left[\sum_{i=0}^{+\infty} |u_i X_i|^2\right]\right)^{1/2} \leq \alpha_p \beta_p \left(\mathbb{E}\left[\sum_{i=0}^{+\infty} |u_i X_i|^p\right]\right)^{1/p} = \alpha_p \beta_p ||X||_p.$$

Ainsi, la norme p est équivalente à la norme 2, et ce, pour tout $p \in [1, +\infty[$. En particulier, par transitivité, la norme p est équivalente à la norme q pour tout $p, q \in [1, +\infty[$.

5 Une deuxième conséquence

20. Soit $(X_i)_i$ suite de variables aléatoires indépendantes suivant toutes une loi de Rademarcher centrée.

Soit
$$f:(x_1,\dots,x_k)\in\mathbb{R}^k\mapsto\sum_{i=1}^ka_ix_i$$
. Soit $Y=f(X_1,\dots,X_k)=\sum_{i=1}^ka_iX_i$. Alors

$$\left(\|(a_1,\cdots,a_k)\|_2^{\mathbb{R}^k}\right)^2 = \sum_{i=1}^k a_i^2 \underset{Q_{10}}{=} \mathbb{E}[Y^2].$$

Ainsi, par la question 11 et 16, on a

$$\alpha_1 \| (a_1, \dots, a_k) \|_2^{\mathbb{R}^k} \le \mathbb{E}[|Y|] \le \beta_1 \| (a_1, \dots, a_k) \|_2^{\mathbb{R}^k}.$$

Or,
$$\prod_{j=1}^{k} X_{j}(\Omega) = \{-1, 1\}^{k} \text{ donc}$$

$$\mathbb{E}\left[|Y|\right] = \mathbb{E}\left[|f(X_{1}, \dots, X_{n})|\right]$$

$$= \sum_{\text{Transfert}} \sum_{(\varepsilon_{1}, \dots, \varepsilon_{k}) \in \{-1, 1\}^{k}} \mathbb{P}\left(\bigcap_{j=1}^{k} (X_{j} = \varepsilon_{j})\right) |f(\varepsilon_{1}, \dots, \varepsilon_{k})|$$

$$= \sum_{\text{Indep.}} \prod_{(\varepsilon_{1}, \dots, \varepsilon_{k}) \in \{-1, 1\}^{k}} \prod_{j=1}^{k} \mathbb{P}\left(X_{j} = \varepsilon_{j}\right) \left|\sum_{i=1}^{k} \varepsilon_{i} a_{i}\right|$$

$$= \sum_{(\varepsilon_{1}, \dots, \varepsilon_{k}) \in \{-1, 1\}^{k}} \frac{1}{2^{k}} \left|\sum_{i=1}^{k} \varepsilon_{i} a_{i}\right|$$

$$= \frac{1}{n} \sum_{(\varepsilon_{1}, \dots, \varepsilon_{k}) \in \{-1, 1\}^{k}} \left|\sum_{i=1}^{k} \varepsilon_{i} a_{i}\right|.$$

Finalement, on a bien

$$\alpha_1 n \|(a_1, \cdots, a_k)\|_2^{\mathbb{R}^k} \leq \sum_{(\varepsilon_1, \cdots, \varepsilon_k) \in \{-1, 1\}^k} \left| \sum_{i=1}^k \varepsilon_i a_i \right| \leq \beta_1 n \|(a_1, \cdots, a_k)\|_2^{\mathbb{R}^k}.$$

21. On pose $F = T(\mathbb{R}^k)$ avec

$$T: \mathbb{R}^k \to \mathbb{R}^n$$

$$(a_1, \dots, a_k) \mapsto \left(\sum_{i=1}^k a_i \varepsilon_i\right)_{(\varepsilon_1, \dots, \varepsilon_k) \in \{-1, 1\}^k}.$$

On note désormais x au lieu de (x_1, \dots, x_n) et a au lieu de (a_1, \dots, a_k) . Par linéarité de la somme, T est linéaire. Par la question précédente, on a

$$||T(a)||_1^{\mathbb{R}^n} \ge \alpha_1 n ||a||_2^{\mathbb{R}^k}$$

donc demander T(a)=0 entraine que la norme de a est nulle. Ainsi, T est injective. Elle est donc bijective de \mathbb{R}^k dans F ce qui fait que F est de dimension k. Maintenant, pour $x=T(a)\in\mathbb{R}^n$, on a alors

$$||x||_1^{\mathbb{R}^n} = ||T(a)||_1^{\mathbb{R}^n} \ge \alpha_1 n ||a||_2^{\mathbb{R}^k}.$$

Or, en reprenant les notations et calculs de la question précédente (on a repris $(X_i)_i$, les $(a_i)_i$ et Y),

$$\mathbb{E}[Y^2] = \sum_{(\varepsilon_1, \dots, \varepsilon_k) \in \{-1, 1\}^k} \prod_{j=1}^k \mathbb{P}(X_j = \varepsilon_j) \left(\sum_{i=1}^k \varepsilon_i a_i \right)^2 = \frac{1}{n} \sum_{(\varepsilon_1, \dots, \varepsilon_k) \in \{-1, 1\}^k} \left(\sum_{i=1}^k \varepsilon_i a_i \right)^2.$$

On reconnait alors à gauche $\sum_{i=1}^k a_i^2 = (\|a\|_2^{\mathbb{R}^k})^2$ et à droite, $\frac{1}{n}(\|x\|_2^{\mathbb{R}^n})^2$. Ainsi,

$$\alpha_1 n \|a\|_2^{\mathbb{R}^k} = \alpha_1 \sqrt{n} \|x\|_2^{\mathbb{R}^n}$$

donc

$$\alpha_1 \sqrt{n} \|x\|_2^{\mathbb{R}^n} \le \|x\|_1^{\mathbb{R}^n}.$$

Le même calcul montre que

$$||x||_1^{\mathbb{R}^n} \le \beta_1 \sqrt{n} ||x||_2^{\mathbb{R}^n}.$$

Ceci étant v
rai pour tout $x \in F$, on a donc

$$\forall x \in F, \alpha_1 \sqrt{n} ||x||_2^{\mathbb{R}^n} \le ||x||_1^{\mathbb{R}^n} \le \beta_1 \sqrt{n} ||x||_2^{\mathbb{R}^n}.$$

FIN DU SUJET