

PC

Exercice 1

Soient \mathcal{C} et \mathcal{D} un cercle et une droite disjoints. Déterminer l'ensemble des centres des cercles tangents à la fois à \mathcal{C} et \mathcal{D} .

Exercice 2

Soit f un endomorphisme de \mathbb{R}^n et A sa matrice dans la base canonique de \mathbb{R}^n . On suppose que λ est une valeur propre non réelle de A et que $Z \in \mathbb{C}^n$ est un vecteur propre associé.

On note X et Y les vecteurs de \mathbb{R}^n dont les composantes sont respectivement les parties réelles et imaginaires des composantes de Z.

- 1. Montrer que X et Y sont non colinéaires.
- 2. Montrer que vect (X, Y) est stable par f.
- 3. On suppose que la matrice de f est donnée par

$$A = \begin{pmatrix} 1 & 1 & 0 & 0 \\ -1 & 2 & 0 & 1 \\ 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 1 \end{pmatrix}$$

Déterminer tous les plans stables par f.

DC

Exercice 1

Montrer que

$$\sin\left(\frac{\pi}{5}\right) = \sqrt{\frac{5 - \sqrt{5}}{8}}.$$

Exercice 2

Soit E un espace vectoriel de dimension finie $n \ge 2$.

- 1. Donner un exemple d'endomorphisme f de E dont l'image et le noyau ne sont pas supplémentaires.
- 2. On suppose, dans cette question seulement, que f est un endomorphisme de E diagonalisable. Justifier que l'image et le noyau de f sont supplémentaires.
- 3. Soit f un endomorphisme de E. Montrer qu'il existe un entier naturel non nul k tel que

$$\operatorname{Im}(f^k) \oplus \operatorname{Ker}(f^k) = E$$

L'endomorphisme f^k est-il nécessairement diagonalisable ?

4. Le résultat démontré en 3 reste-t-il valable si l'espace E est de dimension infinie ?

Oral

 PC

L'espace $E=\mathbb{R}^3$ est muni de sa structure euclidienne canonique.

- 1. Déterminer les matrices dans la base canonique de
 - la rotation d'axe orienté par $\vec{i} + \vec{k}$ d'angle $\pi/4$;
 - la réflexion par rapport au plan F: x + 2y + z = 0.
- 2. Déterminer des réels α , a, b, c et d tels que $A = \alpha \begin{pmatrix} 2 & -1 & 2 \\ 2 & a & c \\ -1 & b & d \end{pmatrix}$ soit une matrice de rotation.

En préciser les éléments caractéristiques.

- 3. Soit r une rotation d'axe orienté $\operatorname{Vect}(a)$ avec ||a|| = 1 et d'angle θ et soit $x \in E$. On note (u, v) l'unique couple de $\operatorname{Vect}(a) \times \operatorname{Vect}(a)^{\perp}$ tel que x = u + v.
 - a. Préciser (u, v) en fonction de x puis déterminer r(u).
 - b. Déterminer une expression simple de r(v) en fonction de v et $a \wedge v$.

(On pourra remarquer que $(a, v, a \wedge v)$ est une famille orthogonale.)

- c. En déduire que $r(x) = (1 \cos \theta) \langle x, a \rangle a + \cos \theta x + \sin \theta (a \wedge x)$.
- 4. En utilisant le résultat précédent, retrouver la matrice de la rotation d'axe $\vec{\imath} + \vec{k}$ d'angle $\pi/4$.
- 5. Soit le système différentiel X' = AX avec $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.
 - a. Montrer qu'il existe une application $t\mapsto B(t)$ à valeurs dans $\mathcal{M}_3(\mathbb{R})$ que l'on déterminera telle que $\forall t\in\mathbb{R},\quad X(t)=B(t)X(0).$
 - b. Décrire l'endomorphisme canoniquement associé à B(t) pour t réel fixé.

PC

Exercice 1

Pour tout $(n,p) \in \mathbb{N}^{*2}$, on note

$$u_{n,p} = \frac{1}{p^n} \left(\sum_{k=1}^p \left(1 + \frac{k}{p} \right)^{1/n} \right)^n$$

Déterminer $\lim_{p \to +\infty} \left(\lim_{n \to +\infty} u_{n,p} \right)$ et $\lim_{n \to +\infty} \left(\lim_{p \to +\infty} u_{n,p} \right)$.

Exercice 2

Soit $(a,b) \in \mathbb{R}^2$ avec a < b. On note E l'ensemble de fonctions définies sur [a,b] à valeurs dans \mathbb{R}_+^* . On définit l'application Φ de E dans \mathbb{R}_+ par

$$\forall f \in E, \quad \Phi(f) = \int_{a}^{b} f(t) dt \int_{a}^{b} \frac{1}{f(t)} dt$$

Déterminer (s'ils existent) les réels $m = \inf_{f \in E} \Phi(f)$ et $M = \sup_{f \in E} \Phi(f)$.

Précisez éventuellement pour quelles fonctions ces valeurs sont atteintes.

PC

Dans cet exercice, on se place dans l'espace affine euclidien \mathbb{R}^3 rapporté à un repère orthonormal $(O, \vec{\imath}, \vec{j}, \vec{k})$.

- 1. Soit P le plan d'équation x+y-2z-1=0. Déterminer la distance d'un point M(x,y,z) à P, notée d(M,P).
- 2. Soit D la droite passant par le point A(1,1,0) et dirigée par le vecteur $\vec{u} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.

Représenter simultanément à l'écran la droite D et le plan P. Sont-ils parallèles ?

Calculer la distance d'un point M(x, y, z) à D, notée d(M, D).

Oral

3. On définit

$$\Sigma = \{ M(x, y, z) \in \mathbb{R}^3, \quad d(M, D)^2 + d(M, P)^2 = 5 \}$$

Déterminer une équation cartésienne de Σ .

Représenter simultanément $\Sigma,\,D$ et P à l'écran.

Que peut-on conjecturer quant à la nature de Σ ?

- 4. Réduire l'équation cartésienne obtenue pour Σ dans un repère orthonormal approprié et en déduire sa nature.
- 5. Calculer le volume du domaine intérieur à Σ .

Oral

PC

1. Soit $(t,x) \mapsto h(t,x)$ une application de classe C^1 sur \mathbb{R}^2 à valeurs réelles. On pose pour tout $x \in \mathbb{R}$

$$H(x) = \int_{0}^{x} h(t, x) dt$$

En utilisant le logiciel informatique exprimer la dérivée H'(x) à l'aide de l'application h.

On admettra provisoirement que H'(x) existe pour tout x réel ainsi que la formule trouvée.

2. On veut déterminer l'ensemble des fonctions f de $\mathbb R$ dans $\mathbb R$ et de classe C^1 qui vérifient le système d'équations suivant :

$$(S) \left\{ \begin{aligned} f(0) &= 1 \\ \forall x \in \mathbb{R}, \quad f'(x) + 8 \int_0^x \cos(x-t) f(t) \mathrm{d}t &= 9 \end{aligned} \right.$$

- a. Montrer qu'une application f de classe C^1 et qui vérifie le système d'équations (S) est forcément de classe C^{∞} .
- b. Montrer qu'il existe des fonctions f_1 , f_2 , f_3 à déterminer explicitement et des constantes A, B, F telles que pour tout $x \in \mathbb{R}$, on ait nécessairement

$$f(x) = Af_1(x) + Bf_2(x) + f_3(x) + F$$

- c. Déterminer toutes les solutions du problème considéré.
- 3. Démontrer le résultat trouvé à la première question.

Oral

PC

On considère la matrice

$$A = \begin{pmatrix} -23 & 10 & 3 & -11 \\ 314 & -126 & -39 & 139 \\ -426 & 174 & 56 & -187 \\ 225 & -92 & -29 & 100 \end{pmatrix}$$

et u l'endomorphisme canoniquement associé de \mathbb{R}^4 .

Avant toute chose, afin de corriger une éventuelle faute de frappe, vérifier que u(1,2,3,4) = (-38,501,-658,354).

- 1. Déterminer le polynôme caractéristique P de u, ainsi que ses valeurs propres et espaces propres. Que dire de sa diagonalisabilité?
- 2. On pose $v_1 = (-8, 103, -139, 73), v_2 = u(v_1)$ et $v_3 = u(v_2)$.
 - a. Montrer que (v_1, v_2, v_3) est liée et déterminer une relation de dépendance linéaire entre ces vecteurs.
 - b. On pose $F = \text{Vect}(v_1, v_2)$. Montrer que F est un plan stable par u dont $B = (v_1, v_2)$ est une base.
 - c. Déterminer la matrice C dans la base B de l'endomorphisme u_F induit par u sur F.
 - d. Déterminer le polynôme caractéristique P_F de u_F , ainsi que ses valeurs propres et espaces propres. Que dire de sa diagonalisabilité ?
 - e. Comparer P_F et P.
- 3. On pose $w_1 = (2, -13, 17, -9), w_2 = u(w_1), w_3 = u(w_2)$ et $w_4 = u(w_3)$.
 - a. Montrer que (w_1, w_2, w_3, w_4) est liée et déterminer une relation de dépendance linéaire entre ces vecteurs.
 - b. On pose $G = \text{Vect}(w_1, w_2, w_3)$. Montrer que G est stable par u et que $B' = (w_1, w_2, w_3)$ en est une base.
 - c. Déterminer la matrice C' dans la base B' de l'endomorphisme u_G induit par u sur G.
 - d. Déterminer le polynôme caractéristique P_G de u_G , ainsi que ses valeurs propres et espaces propres. Que dire de sa diagonalisabilité?
 - e. Comparer P_G et P.
- 4. Peut-on trouver un plan de \mathbb{R}^4 stable par u sur lequel le polynôme caractéristique de l'endomorphisme induit est $(X-2)^2$?

Oral

 PC

L'espace $E=\mathbb{R}^3$ est muni de sa structure euclidienne canonique.

- 1. Déterminer les matrices dans la base canonique de
 - la rotation d'axe orienté par $\vec{i} + \vec{k}$ d'angle $\pi/4$;
 - la réflexion par rapport au plan F: x + 2y + z = 0.
- 2. Déterminer des réels α , a, b, c et d tels que $A = \alpha \begin{pmatrix} 2 & -1 & 2 \\ 2 & a & c \\ -1 & b & d \end{pmatrix}$ soit une matrice de rotation.

En préciser les éléments caractéristiques.

- 3. Soit r une rotation d'axe orienté $\operatorname{Vect}(a)$ avec ||a|| = 1 et d'angle θ et soit $x \in E$. On note (u, v) l'unique couple de $\operatorname{Vect}(a) \times \operatorname{Vect}(a)^{\perp}$ tel que x = u + v.
 - a. Préciser (u, v) en fonction de x puis déterminer r(u).
 - b. Déterminer une expression simple de r(v) en fonction de v et $a \wedge v$.

(On pourra remarquer que $(a, v, a \wedge v)$ est une famille orthogonale.)

- c. En déduire que $r(x) = (1 \cos \theta) \langle x, a \rangle a + \cos \theta x + \sin \theta (a \wedge x)$.
- 4. En utilisant le résultat précédent, retrouver la matrice de la rotation d'axe $\vec{\imath} + \vec{k}$ d'angle $\pi/4$.
- 5. Soit le système différentiel X' = AX avec $A = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}$.
 - a. Montrer qu'il existe une application $t\mapsto B(t)$ à valeurs dans $\mathcal{M}_3(\mathbb{R})$ que l'on déterminera telle que $\forall t\in\mathbb{R},\quad X(t)=B(t)X(0).$
 - b. Décrire l'endomorphisme canoniquement associé à B(t) pour t réel fixé.

Oral

 PC

CONCOURS CENTRALE SUPÉLEC

On pose pour tout $x \in [0,1[,\,f(x)=\sqrt{1-x}\sum_{n=1}^{+\infty}x^{n^2}$ et pour tout $N \in \mathbb{N}^*,\,f_N(x)=\sqrt{1-x}\sum_{n=1}^Nx^{n^2}.$

- 1. Vérifier que f est correctement définie.
- 2. Représenter simultanément les fonctions f_N pour $N \in \{1,2,...,10\}.$

Quelle conjecture peut-on en déduire?

3. Calculer les valeurs approchées des maximums des fonctions f_N pour $N \in \{2,4,...,40\}$.

On justifiera la monotonie de cette suite.

4. On note
$$\sum_{n=1}^{+\infty} x^{n^2} = \sum_{n=0}^{+\infty} a_n x^n$$
.

Donner la valeur de $A_N = \sum_{n=0}^N a_n$.

5. Soit g une fonction développable en série entière de rayon égal à 1.

On note
$$g(x)=\sum_{n=0}^{+\infty}c_nx^n$$
 et on suppose que pour tout $n\in\mathbb{N},\ c_n\geqslant 0.$ On note $C_N=\sum_{n=1}^Nc_n.$

Montrer que, pour tout
$$x \in]-1,1[, g(x) = (1-x)\sum_{n=0}^{+\infty} C_n x^n.$$

On note
$$\frac{1}{\sqrt{1-x}} = \sum_{n=0}^{+\infty} b_n x^n$$
. Quelle est la valeur de $B_N = \sum_{n=0}^N b_n$?

6. Calculer la limite $\lim_{N\to\infty} \frac{A_N}{B_N}$.

La comparer aux valeurs trouvées à la question 3.

7. Montrer la conjecture de la question 2.

PC

Dans cet exercice, on se place dans l'espace affine euclidien \mathbb{R}^3 rapporté à un repère orthonormal $(O, \vec{\imath}, \vec{j}, \vec{k})$.

- 1. Soit P le plan d'équation x+y-2z-1=0. Déterminer la distance d'un point M(x,y,z) à P, notée d(M,P).
- 2. Soit D la droite passant par le point A(1,1,0) et dirigée par le vecteur $\vec{u} = \begin{pmatrix} 1 \\ 2 \\ -1 \end{pmatrix}$.

Représenter simultanément à l'écran la droite D et le plan P. Sont-ils parallèles ?

Calculer la distance d'un point M(x, y, z) à D, notée d(M, D).

Oral

3. On définit

$$\Sigma = \{ M(x, y, z) \in \mathbb{R}^3, \quad d(M, D)^2 + d(M, P)^2 = 5 \}$$

Déterminer une équation cartésienne de Σ .

Représenter simultanément $\Sigma,\,D$ et P à l'écran.

Que peut-on conjecturer quant à la nature de Σ ?

- 4. Réduire l'équation cartésienne obtenue pour Σ dans un repère orthonormal approprié et en déduire sa nature.
- 5. Calculer le volume du domaine intérieur à Σ .